LogoLogo
SnowflakeDocumentation Home
  • Snowpark Migration Accelerator Documentation
  • General
    • Introduction
    • Getting Started
      • Download and Access
      • Installation
        • Windows Installation
        • MacOS Installation
        • Linux Installation
    • Conversion Software Terms of Use
      • Open Source Libraries
    • Release Notes
      • Old Version Release Notes
        • SC Spark Scala Release Notes
          • Known Issues
        • SC Spark Python Release Notes
          • Known Issues
    • Roadmap
  • User Guide
    • Overview
    • Before Using the SMA
      • Supported Platforms
      • Supported Filetypes
      • Code Extraction
      • Pre-Processing Considerations
    • Project Overview
      • Project Setup
      • Configuration and Settings
      • Tool Execution
    • Assessment
      • How the Assessment Works
      • Assessment Quick Start
      • Understanding the Assessment Summary
      • Readiness Scores
      • Output Reports
        • Curated Reports
        • SMA Inventories
        • Generic Inventories
        • Assessment zip file
      • Output Logs
      • Spark Reference Categories
    • Conversion
      • How the Conversion Works
      • Conversion Quick Start
      • Conversion Setup
      • Understanding the Conversion Assessment and Reporting
      • Output Code
    • Using the SMA CLI
      • Additional Parameters
  • Use Cases
    • Assessment Walkthrough
      • Walkthrough Setup
        • Notes on Code Preparation
      • Running the Tool
      • Interpreting the Assessment Output
        • Assessment Output - In Application
        • Assessment Output - Reports Folder
      • Running the SMA Again
    • Conversion Walkthrough
    • Sample Project
    • Using SMA with Docker
    • SMA CLI Walkthrough
  • Issue Analysis
    • Approach
    • Issue Code Categorization
    • Issue Codes by Source
      • General
      • Python
        • SPRKPY1000
        • SPRKPY1001
        • SPRKPY1002
        • SPRKPY1003
        • SPRKPY1004
        • SPRKPY1005
        • SPRKPY1006
        • SPRKPY1007
        • SPRKPY1008
        • SPRKPY1009
        • SPRKPY1010
        • SPRKPY1011
        • SPRKPY1012
        • SPRKPY1013
        • SPRKPY1014
        • SPRKPY1015
        • SPRKPY1016
        • SPRKPY1017
        • SPRKPY1018
        • SPRKPY1019
        • SPRKPY1020
        • SPRKPY1021
        • SPRKPY1022
        • SPRKPY1023
        • SPRKPY1024
        • SPRKPY1025
        • SPRKPY1026
        • SPRKPY1027
        • SPRKPY1028
        • SPRKPY1029
        • SPRKPY1030
        • SPRKPY1031
        • SPRKPY1032
        • SPRKPY1033
        • SPRKPY1034
        • SPRKPY1035
        • SPRKPY1036
        • SPRKPY1037
        • SPRKPY1038
        • SPRKPY1039
        • SPRKPY1040
        • SPRKPY1041
        • SPRKPY1042
        • SPRKPY1043
        • SPRKPY1044
        • SPRKPY1045
        • SPRKPY1046
        • SPRKPY1047
        • SPRKPY1048
        • SPRKPY1049
        • SPRKPY1050
        • SPRKPY1051
        • SPRKPY1052
        • SPRKPY1053
        • SPRKPY1054
        • SPRKPY1055
        • SPRKPY1056
        • SPRKPY1057
        • SPRKPY1058
        • SPRKPY1059
        • SPRKPY1060
        • SPRKPY1061
        • SPRKPY1062
        • SPRKPY1063
        • SPRKPY1064
        • SPRKPY1065
        • SPRKPY1066
        • SPRKPY1067
        • SPRKPY1068
        • SPRKPY1069
        • SPRKPY1070
        • SPRKPY1071
        • SPRKPY1072
        • SPRKPY1073
        • SPRKPY1074
        • SPRKPY1075
        • SPRKPY1076
        • SPRKPY1077
        • SPRKPY1078
        • SPRKPY1079
        • SPRKPY1080
        • SPRKPY1081
        • SPRKPY1082
        • SPRKPY1083
        • SPRKPY1084
        • SPRKPY1085
        • SPRKPY1086
        • SPRKPY1087
        • SPRKPY1088
        • SPRKPY1089
        • SPRKPY1101
      • Spark Scala
        • SPRKSCL1000
        • SPRKSCL1001
        • SPRKSCL1002
        • SPRKSCL1100
        • SPRKSCL1101
        • SPRKSCL1102
        • SPRKSCL1103
        • SPRKSCL1104
        • SPRKSCL1105
        • SPRKSCL1106
        • SPRKSCL1107
        • SPRKSCL1108
        • SPRKSCL1109
        • SPRKSCL1110
        • SPRKSCL1111
        • SPRKSCL1112
        • SPRKSCL1113
        • SPRKSCL1114
        • SPRKSCL1115
        • SPRKSCL1116
        • SPRKSCL1117
        • SPRKSCL1118
        • SPRKSCL1119
        • SPRKSCL1120
        • SPRKSCL1121
        • SPRKSCL1122
        • SPRKSCL1123
        • SPRKSCL1124
        • SPRKSCL1125
        • SPRKSCL1126
        • SPRKSCL1127
        • SPRKSCL1128
        • SPRKSCL1129
        • SPRKSCL1130
        • SPRKSCL1131
        • SPRKSCL1132
        • SPRKSCL1133
        • SPRKSCL1134
        • SPRKSCL1135
        • SPRKSCL1136
        • SPRKSCL1137
        • SPRKSCL1138
        • SPRKSCL1139
        • SPRKSCL1140
        • SPRKSCL1141
        • SPRKSCL1142
        • SPRKSCL1143
        • SPRKSCL1144
        • SPRKSCL1145
        • SPRKSCL1146
        • SPRKSCL1147
        • SPRKSCL1148
        • SPRKSCL1149
        • SPRKSCL1150
        • SPRKSCL1151
        • SPRKSCL1152
        • SPRKSCL1153
        • SPRKSCL1154
        • SPRKSCL1155
        • SPRKSCL1156
        • SPRKSCL1157
        • SPRKSCL1158
        • SPRKSCL1159
        • SPRKSCL1160
        • SPRKSCL1161
        • SPRKSCL1162
        • SPRKSCL1163
        • SPRKSCL1164
        • SPRKSCL1165
        • SPRKSCL1166
        • SPRKSCL1167
        • SPRKSCL1168
        • SPRKSCL1169
        • SPRKSCL1170
        • SPRKSCL1171
        • SPRKSCL1172
        • SPRKSCL1173
        • SPRKSCL1174
        • SPRKSCL1175
      • SQL
        • SparkSQL
          • SPRKSPSQL1001
          • SPRKSPSQL1002
          • SPRKSPSQL1003
          • SPRKSPSQL1004
          • SPRKSPSQL1005
          • SPRKSPSQL1006
        • Hive
          • SPRKHVSQL1001
          • SPRKHVSQL1002
          • SPRKHVSQL1003
          • SPRKHVSQL1004
          • SPRKHVSQL1005
          • SPRKHVSQL1006
      • Pandas
        • PNDSPY1001
        • PNDSPY1002
        • PNDSPY1003
        • PNDSPY1004
      • DBX
        • SPRKDBX1001
    • Troubleshooting the Output Code
      • Locating Issues
    • Workarounds
    • Deploying the Output Code
  • Translation Reference
    • Translation Reference Overview
    • SIT Tagging
      • SQL statements
    • SQL Embedded code
    • HiveSQL
      • Supported functions
    • Spark SQL
      • Spark SQL DDL
        • Create Table
          • Using
      • Spark SQL DML
        • Merge
        • Select
          • Distinct
          • Values
          • Join
          • Where
          • Group By
          • Union
      • Spark SQL Data Types
      • Supported functions
  • Workspace Estimator
    • Overview
    • Getting Started
  • INTERACTIVE ASSESSMENT APPLICATION
    • Overview
    • Installation Guide
  • Support
    • General Troubleshooting
      • How do I give SMA permission to the config folder?
      • Invalid Access Code error on VDI
      • How do I give SMA permission to Documents, Desktop, and Downloads folders?
    • Frequently Asked Questions (FAQ)
      • Using SMA with Jupyter Notebooks
      • How to request an access code
      • Sharing the Output with Snowflake
      • DBC files explode
    • Glossary
    • Contact Us
Powered by GitBook
On this page
  • Description
  • Syntax
  • Sample Source Patterns
  • Setup data
  • Pattern code
  • Known Issues
  • Related EWIs
  1. Translation Reference
  2. Spark SQL
  3. Spark SQL DML
  4. Select

Join

Join the fun! Use the SMA today!

PreviousValuesNextWhere

Last updated 1 year ago

Description

Combines the rows from two based on join criteria. ()

A JOIN operation combines rows from two tables (or other table-like sources, such as views or table functions) to create a new combined row that can be used in the query. For a conceptual explanation of joins, see . ()

Syntax

left_table_reference { [ join_type ] JOIN right_table_reference join_criteria |
           NATURAL join_type JOIN right_table_reference |
           CROSS JOIN right_table_reference }

join_type
  { [ INNER ] |
    LEFT [ OUTER ] |
    [ LEFT ] SEMI |
    RIGHT [ OUTER ] |
    FULL [ OUTER ] |
    [ LEFT ] ANTI |
    CROSS }

join_criteria
  { ON boolean_expression |
    USING ( column_name [, ...] ) }
SELECT ...
FROM <object_ref1> [
                     {
                       INNER
                       | { LEFT | RIGHT | FULL } [ OUTER ]
                     }
                   ]
                   JOIN <object_ref2>
  [ ON <condition> ]
[ ... ]

SELECT *
FROM <object_ref1> [
                     {
                       INNER
                       | { LEFT | RIGHT | FULL } [ OUTER ]
                     }
                   ]
                   JOIN <object_ref2>
  [ USING( <column_list> ) ]
[ ... ]

SELECT ...
FROM <object_ref1> [
                     {
                       | NATURAL [ { LEFT | RIGHT | FULL } [ OUTER ] ]
                       | CROSS
                     }
                   ]
                   JOIN <object_ref2>
[ ... ]

Sample Source Patterns

Setup data

Databricks

-- Use employee and department tables to demonstrate different type of joins.
CREATE TEMP VIEW employee(id, name, deptno) AS
     VALUES(105, 'Chloe', 5),
           (103, 'Paul', 3),
           (101, 'John', 1),
           (102, 'Lisa', 2),
           (104, 'Evan', 4),
           (106, 'Amy', 6);

CREATE TEMP VIEW department(deptno, deptname) AS
    VALUES(3, 'Engineering'),
          (2, 'Sales'      ),
          (1, 'Marketing'  );

Snowflake

-- Use employee and department tables to demonstrate different type of joins.
CREATE TEMPORARY TABLE employee(id, name, deptno) AS
SELECT id, name, deptno
  FROM (VALUES (105, 'Chloe', 5),
           (103, 'Paul' , 3),
           (101, 'John' , 1),
           (102, 'Lisa' , 2),
           (104, 'Evan' , 4),
           (106, 'Amy'  , 6)) AS v1 (id, name, deptno);

CREATE TEMP VIEW department(deptno, deptname) AS
SELECT deptno, deptname
  FROM (VALUES(3, 'Engineering'),
          (2, 'Sales'      ),
          (1, 'Marketing'  )) AS v1 (deptno, deptname);

Pattern code

Databricks

-- 1. Use employee and department tables to demonstrate inner join.
SELECT id, name, employee.deptno, deptname
   FROM employee
   INNER JOIN department ON employee.deptno = department.deptno;
 
-- 2. Use employee and department tables to demonstrate left join.
SELECT id, name, employee.deptno, deptname
   FROM employee
   LEFT JOIN department ON employee.deptno = department.deptno;


-- 3. Use employee and department tables to demonstrate right join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    RIGHT JOIN department ON employee.deptno = department.deptno;


-- 4. Use employee and department tables to demonstrate full join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    FULL JOIN department ON employee.deptno = department.deptno;


-- 5. Use employee and department tables to demonstrate cross join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    CROSS JOIN department;

-- 6. Use employee and department tables to demonstrate semi join.
SELECT *
    FROM employee
    SEMI JOIN department ON employee.deptno = department.deptno;
  1. Use employee and department tables to demonstrate inner join.

id

name

deptno

deptname

103

Paul

3

Engineering

101

John

1

Marketing

102

Lisa

2

Sales


  1. Use employee and department tables to demonstrate left join.

id

name

deptno

deptname

105

Chloe

5

null

103

Paul

3

Engineering

101

John

1

Marketing

102

Lisa

2

Sales

104

Evan

4

null

106

Amy

6

null


  1. Use employee and department tables to demonstrate right join.

id

name

deptno

deptname

103

Paul

3

Engineering

102

Lisa

2

Sales

101

John

1

Marketing


  1. Use employee and department tables to demonstrate full join.

id

name

deptno

deptname

101

John

1

Marketing

102

Lisa

2

Sales

103

Paul

3

Engineering

104

Evan

4

null

105

Chloe

5

null

106

Amy

6

null


  1. Use employee and department tables to demonstrate cross join.

id

name

deptno

deptname

105

Chloe

5

Engineering

105

Chloe

5

Sales

105

Chloe

5

Marketing

103

Paul

3

Engineering

103

Paul

3

Sales

103

Paul

3

Marketing

101

John

1

Engineering

101

John

1

Sales

101

John

1

Marketing

102

Lisa

2

Engineering

102

Lisa

2

Sales

102

Lisa

2

Marketing

104

Evan

4

Engineering

104

Evan

4

Sales

104

Evan

4

Marketing

106

Amy

6

Engineering

106

Amy

6

Sales

106

Amy

6

Marketing


  1. Use employee and department tables to demonstrate semi join.

id

name

deptno

103

Paul

3

101

John

1

102

Lisa

2

Snowflake

-- 1. Use employee and department tables to demonstrate inner join.
SELECT id, name, employee.deptno, deptname
   FROM employee
   INNER JOIN department ON employee.deptno = department.deptno;
 
-- 2. Use employee and department tables to demonstrate left join.
SELECT id, name, employee.deptno, deptname
   FROM employee
   LEFT JOIN department ON employee.deptno = department.deptno;


-- 3. Use employee and department tables to demonstrate right join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    RIGHT JOIN department ON employee.deptno = department.deptno;


-- 4. Use employee and department tables to demonstrate full join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    FULL JOIN department ON employee.deptno = department.deptno;


-- 5. Use employee and department tables to demonstrate cross join.
SELECT id, name, employee.deptno, deptname
    FROM employee
    CROSS JOIN department;

-- 6. Use employee and department tables to demonstrate semi join.
SELECT e.*
    FROM employee e, department d
    WHERE e.deptno = d.deptno;

  1. Use employee and department tables to demonstrate inner join.

id

name

deptno

deptname

103

Paul

3

Engineering

101

John

1

Marketing

102

Lisa

2

Sales


  1. Use employee and department tables to demonstrate left join.

id

name

deptno

deptname

105

Chloe

5

null

103

Paul

3

Engineering

101

John

1

Marketing

102

Lisa

2

Sales

104

Evan

4

null

106

Amy

6

null


  1. Use employee and department tables to demonstrate right join.

id

name

deptno

deptname

103

Paul

3

Engineering

102

Lisa

2

Sales

101

John

1

Marketing


  1. Use employee and department tables to demonstrate full join.

id

name

deptno

deptname

105

Chloe

5

null

103

Paul

3

Engineering

101

John

1

Marketing

102

Lisa

2

Sales

104

Evan

4

null

106

Amy

6

null


  1. Use employee and department tables to demonstrate cross join.

id

name

deptno

deptname

105

Chloe

5

Engineering

105

Chloe

5

Sales

105

Chloe

5

Marketing

103

Paul

3

Engineering

103

Paul

3

Sales

103

Paul

3

Marketing

101

John

1

Engineering

101

John

1

Sales

101

John

1

Marketing

102

Lisa

2

Engineering

102

Lisa

2

Sales

102

Lisa

2

Marketing

104

Evan

4

Engineering

104

Evan

4

Sales

104

Evan

4

Marketing

106

Amy

6

Engineering

106

Amy

6

Sales

106

Amy

6

Marketing


  1. Use employee and department tables to demonstrate semi join.

id

name

deptno

103

Paul

3

101

John

1

102

Lisa

2

Known Issues

No issues were found

Related EWIs

No related EWIs

table references
Databricks SQL Language Reference JOIN
Working with Joins
Snowflake SQL Language Reference JOIN