LogoLogo
SnowflakeDocumentation Home
  • Snowpark Migration Accelerator Documentation
  • General
    • Introduction
    • Getting Started
      • Download and Access
      • Installation
        • Windows Installation
        • MacOS Installation
        • Linux Installation
    • Conversion Software Terms of Use
      • Open Source Libraries
    • Release Notes
      • Old Version Release Notes
        • SC Spark Scala Release Notes
          • Known Issues
        • SC Spark Python Release Notes
          • Known Issues
    • Roadmap
  • User Guide
    • Overview
    • Before Using the SMA
      • Supported Platforms
      • Supported Filetypes
      • Code Extraction
      • Pre-Processing Considerations
    • Project Overview
      • Project Setup
      • Configuration and Settings
      • Tool Execution
    • Assessment
      • How the Assessment Works
      • Assessment Quick Start
      • Understanding the Assessment Summary
      • Readiness Scores
      • Output Reports
        • Curated Reports
        • SMA Inventories
        • Generic Inventories
        • Assessment zip file
      • Output Logs
      • Spark Reference Categories
    • Conversion
      • How the Conversion Works
      • Conversion Quick Start
      • Conversion Setup
      • Understanding the Conversion Assessment and Reporting
      • Output Code
    • Using the SMA CLI
      • Additional Parameters
  • Use Cases
    • Assessment Walkthrough
      • Walkthrough Setup
        • Notes on Code Preparation
      • Running the Tool
      • Interpreting the Assessment Output
        • Assessment Output - In Application
        • Assessment Output - Reports Folder
      • Running the SMA Again
    • Conversion Walkthrough
    • Sample Project
    • Using SMA with Docker
    • SMA CLI Walkthrough
  • Issue Analysis
    • Approach
    • Issue Code Categorization
    • Issue Codes by Source
      • General
      • Python
        • SPRKPY1000
        • SPRKPY1001
        • SPRKPY1002
        • SPRKPY1003
        • SPRKPY1004
        • SPRKPY1005
        • SPRKPY1006
        • SPRKPY1007
        • SPRKPY1008
        • SPRKPY1009
        • SPRKPY1010
        • SPRKPY1011
        • SPRKPY1012
        • SPRKPY1013
        • SPRKPY1014
        • SPRKPY1015
        • SPRKPY1016
        • SPRKPY1017
        • SPRKPY1018
        • SPRKPY1019
        • SPRKPY1020
        • SPRKPY1021
        • SPRKPY1022
        • SPRKPY1023
        • SPRKPY1024
        • SPRKPY1025
        • SPRKPY1026
        • SPRKPY1027
        • SPRKPY1028
        • SPRKPY1029
        • SPRKPY1030
        • SPRKPY1031
        • SPRKPY1032
        • SPRKPY1033
        • SPRKPY1034
        • SPRKPY1035
        • SPRKPY1036
        • SPRKPY1037
        • SPRKPY1038
        • SPRKPY1039
        • SPRKPY1040
        • SPRKPY1041
        • SPRKPY1042
        • SPRKPY1043
        • SPRKPY1044
        • SPRKPY1045
        • SPRKPY1046
        • SPRKPY1047
        • SPRKPY1048
        • SPRKPY1049
        • SPRKPY1050
        • SPRKPY1051
        • SPRKPY1052
        • SPRKPY1053
        • SPRKPY1054
        • SPRKPY1055
        • SPRKPY1056
        • SPRKPY1057
        • SPRKPY1058
        • SPRKPY1059
        • SPRKPY1060
        • SPRKPY1061
        • SPRKPY1062
        • SPRKPY1063
        • SPRKPY1064
        • SPRKPY1065
        • SPRKPY1066
        • SPRKPY1067
        • SPRKPY1068
        • SPRKPY1069
        • SPRKPY1070
        • SPRKPY1071
        • SPRKPY1072
        • SPRKPY1073
        • SPRKPY1074
        • SPRKPY1075
        • SPRKPY1076
        • SPRKPY1077
        • SPRKPY1078
        • SPRKPY1079
        • SPRKPY1080
        • SPRKPY1081
        • SPRKPY1082
        • SPRKPY1083
        • SPRKPY1084
        • SPRKPY1085
        • SPRKPY1086
        • SPRKPY1087
        • SPRKPY1088
        • SPRKPY1089
        • SPRKPY1101
      • Spark Scala
        • SPRKSCL1000
        • SPRKSCL1001
        • SPRKSCL1002
        • SPRKSCL1100
        • SPRKSCL1101
        • SPRKSCL1102
        • SPRKSCL1103
        • SPRKSCL1104
        • SPRKSCL1105
        • SPRKSCL1106
        • SPRKSCL1107
        • SPRKSCL1108
        • SPRKSCL1109
        • SPRKSCL1110
        • SPRKSCL1111
        • SPRKSCL1112
        • SPRKSCL1113
        • SPRKSCL1114
        • SPRKSCL1115
        • SPRKSCL1116
        • SPRKSCL1117
        • SPRKSCL1118
        • SPRKSCL1119
        • SPRKSCL1120
        • SPRKSCL1121
        • SPRKSCL1122
        • SPRKSCL1123
        • SPRKSCL1124
        • SPRKSCL1125
        • SPRKSCL1126
        • SPRKSCL1127
        • SPRKSCL1128
        • SPRKSCL1129
        • SPRKSCL1130
        • SPRKSCL1131
        • SPRKSCL1132
        • SPRKSCL1133
        • SPRKSCL1134
        • SPRKSCL1135
        • SPRKSCL1136
        • SPRKSCL1137
        • SPRKSCL1138
        • SPRKSCL1139
        • SPRKSCL1140
        • SPRKSCL1141
        • SPRKSCL1142
        • SPRKSCL1143
        • SPRKSCL1144
        • SPRKSCL1145
        • SPRKSCL1146
        • SPRKSCL1147
        • SPRKSCL1148
        • SPRKSCL1149
        • SPRKSCL1150
        • SPRKSCL1151
        • SPRKSCL1152
        • SPRKSCL1153
        • SPRKSCL1154
        • SPRKSCL1155
        • SPRKSCL1156
        • SPRKSCL1157
        • SPRKSCL1158
        • SPRKSCL1159
        • SPRKSCL1160
        • SPRKSCL1161
        • SPRKSCL1162
        • SPRKSCL1163
        • SPRKSCL1164
        • SPRKSCL1165
        • SPRKSCL1166
        • SPRKSCL1167
        • SPRKSCL1168
        • SPRKSCL1169
        • SPRKSCL1170
        • SPRKSCL1171
        • SPRKSCL1172
        • SPRKSCL1173
        • SPRKSCL1174
        • SPRKSCL1175
      • SQL
        • SparkSQL
          • SPRKSPSQL1001
          • SPRKSPSQL1002
          • SPRKSPSQL1003
          • SPRKSPSQL1004
          • SPRKSPSQL1005
          • SPRKSPSQL1006
        • Hive
          • SPRKHVSQL1001
          • SPRKHVSQL1002
          • SPRKHVSQL1003
          • SPRKHVSQL1004
          • SPRKHVSQL1005
          • SPRKHVSQL1006
      • Pandas
        • PNDSPY1001
        • PNDSPY1002
        • PNDSPY1003
        • PNDSPY1004
      • DBX
        • SPRKDBX1001
    • Troubleshooting the Output Code
      • Locating Issues
    • Workarounds
    • Deploying the Output Code
  • Translation Reference
    • Translation Reference Overview
    • SIT Tagging
      • SQL statements
    • SQL Embedded code
    • HiveSQL
      • Supported functions
    • Spark SQL
      • Spark SQL DDL
        • Create Table
          • Using
      • Spark SQL DML
        • Merge
        • Select
          • Distinct
          • Values
          • Join
          • Where
          • Group By
          • Union
      • Spark SQL Data Types
      • Supported functions
  • Workspace Estimator
    • Overview
    • Getting Started
  • INTERACTIVE ASSESSMENT APPLICATION
    • Overview
    • Installation Guide
  • Support
    • General Troubleshooting
      • How do I give SMA permission to the config folder?
      • Invalid Access Code error on VDI
      • How do I give SMA permission to Documents, Desktop, and Downloads folders?
    • Frequently Asked Questions (FAQ)
      • Using SMA with Jupyter Notebooks
      • How to request an access code
      • Sharing the Output with Snowflake
      • DBC files explode
    • Glossary
    • Contact Us
Powered by GitBook
On this page
  1. Issue Analysis
  2. Issue Codes by Source

Python

Every Error, Warning, and Issue (EWI) in PySpark

PreviousGeneralNextSPRKPY1000

Last updated 5 months ago

Issues Codes

All of the warnings, parsing errors, and conversion exceptions caused generated by the SMA when taking in Python as a source will appear below. If you have any concerns or see something that's not right, please reach out to the SMA support team at .

Code
Description
Category
Deprecated since

Not supported spark version

Warning

-

File with parsing errors

Parsing error

-

Element is not supported

Conversion error

-

An error occurred when loading the symbol table

Conversion error

-

The symbol table could not be loaded

Parsing error

-

pyspark.conf.SparkConf is not required

Warning

-

pyspark.context.SparkContext is not required

Warning

-

pyspark.sql.context.SQLContext is not required

Warning

-

pyspark.sql.context.HiveContext is not required

Warning

-

pyspark.sql.dataframe.DataFrame.approxQuantile has a workaround

Warning

-

pyspark.sql.dataframe.DataFrame.checkpoint has a workaround

Warning

-

pyspark.sql.dataframe.DataFrameStatFunctions.approxQuantile has a workaround

Warning

-

pyspark.sql.dataframe.DataFrameStatFunctions.writeTo has a workaround

Warning

-

pyspark.sql.functions.acosh has a workaround

Warning

-

pyspark.sql.functions.asinh has a workaround

Warning

-

pyspark.sql.functions.atanh has a workaround

Warning

-

pyspark.sql.functions.collect_set has a workaround

Warning

-

pyspark.sql.functions.date_add has a workaround

Warning

-

pyspark.sql.functions.date_sub has a workaround

Warning

-

pyspark.sql.functions.datediff has a workaround

Warning

-

pyspark.sql.functions.instr has a workaround

Warning

-

pyspark.sql.functions.last has a workaround

Warning

-

pyspark.sql.functions.log10 has a workaround

Warning

-

pyspark.sql.functions.log1p has a workaround

Warning

-

pyspark.sql.functions.log2 has a workaround

Warning

-

pyspark.sql.functions.ntile has a workaround

Warning

-

pyspark.sql.readwriter.DataFrameReader.csv has a workaround

Warning

-

pyspark.sql.readwriter.DataFrameReader.json has a workaround

Warning

-

pyspark.sql.readwriter.DataFrameReader.orc has a workaround

Warning

-

pyspark.sql.readwriter.DataFrameReader.parquet has a workaround

Warning

-

pyspark.sql.session.SparkSession.Builder.appName has a workaround

Warning

-

pyspark.sql.column.Column.contains

Warning

-

Element is not defined

Conversion error

-

pyspark.sql.functions.asc has a workaround

Warning

-

pyspark.sql.functions.desc has a workaround

Warning

-

pyspark.sql.functions.reverse has a workaround

Warning

-

pyspark.sql.column.Column.getField has a workaround

Warning

-

pyspark.sql.functions.sort_array has a workaround

Warning

-

Element is not recognized

Conversion error

-

pyspark.sql.column.Column.getItem has a workaround

Warning

2.3.0

pyspark.sql.functions.explode has workaround

Warning

-

pyspark.sql.functions.explode_outer has workaround

Warning

-

pyspark.sql.functions.posexplode has workaround

Warning

-

pyspark.sql.functions.posexplode_outer has workaround

Warning

-

pyspark.sql.functions.split has workaround

Warning

-

pyspark.sql.functions.map_values has workaround

Warning

-

pyspark.sql.functions.monotonically_increasing_id has workaround

Warning

-

pyspark.context.SparkContext.setLogLevel has workaround

Warning

-

pyspark.sql.session.SparkSession.conf has workaround

Warning

-

pyspark.sql.session.SparkSession.sparkContext

Warning

-

pyspark.conf.SparkConf.set has workaround

Warning

-

pyspark.sql.session.SparkSession.Builder.master has a workaround

Warning

2.4.0

pyspark.sql.session.SparkSession.Builder.enableHiveSupport has workaround

Warning

-

An error occurred when extracting the dbc files

Warning

-

Spark element with a given argument is not supported

Warning

-

Spark element with a given key - value argument is not supported

Warning

-

Option argument contains a value that is not a literal, therefore cannot be evaluated

Warning

-

Method is not supported with a Platform specific key

Conversion error

pyspark.sql.group.GroupedData.pivot without 'values' parameter is not supported

Warning

pyspark.sql.pandas.functions.pandas_udf has a workaround

Warning

to_pandas contains columns of type ArrayType that is not supported and has a workaround.

Warning

-

pyspark.rdd.RDD.getNumPartitions is not required

Warning

-

pyspark.storagelevel.StorageLevel is not required

Warning

-

pyspark.sql.functions.udf without parameters or return type parameter are not supported

Warning

File has mixed indentation (spaces and tabs).

Parsing error

The expected result may be different

Warning

Parameters in pyspark.sql.readwriter.DataFrameReader methods are not supported

Warning

The value of SparkContext is replaced with 'session' variable.

Warning

pyspark.sql.readwriter.DataFrameWriter.partitionBy is not supported, but has a workaround.

Warning

pyspark.sql.readwriter.DataFrameReader.load is not supported, but it has a workaround.

Warning

pyspark.sql.readwriter.DataFrameWriter.save is not supported, but it has a workaround.

Warning

pyspark.sql.readwriter.DataFrameWriter.option is not supported.

Warning

pyspark.ml.feature.VectorAssembler is not supported.

Warning

pyspark.ml.linalg.VectorUDT is not supported.

Warning

pyspark.sql.dataframe.DataFrame.writeTo is not supported, but it has a workaround.

Warning

pyspark.sql.readwriter.DataFrameWriter.option

Warning

pyspark.sql.readwriter.DataFrameWriter.options

Warning

This code section has recovery from parsing errors

Conversion error

sma-support@snowflake.com
SPRKPY1000
SPRKPY1001
SPRKPY1002
SPRKPY1003
SPRKPY1004
SPRKPY1005
SPRKPY1006
SPRKPY1007
SPRKPY1008
SPRKPY1009
SPRKPY1010
SPRKPY1011
SPRKPY1012
SPRKPY1013
SPRKPY1014
SPRKPY1015
SPRKPY1016
SPRKPY1017
SPRKPY1018
SPRKPY1019
SPRKPY1020
SPRKPY1021
SPRKPY1022
SPRKPY1023
SPRKPY1024
SPRKPY1025
SPRKPY1026
SPRKPY1027
SPRKPY1028
SPRKPY1029
SPRKPY1030
SPRKPY1031
SPRKPY1032
SPRKPY1033
SPRKPY1034
SPRKPY1035
SPRKPY1036
SPRKPY1037
SPRKPY1038
SPRKPY1039
SPRKPY1040
SPRKPY1041
SPRKPY1042
SPRKPY1043
SPRKPY1044
SPRKPY1045
SPRKPY1046
SPRKPY1047
SPRKPY1048
SPRKPY1049
SPRKPY1050
SPRKPY1051
SPRKPY1052
SPRKPY1053
SPRKPY1054
SPRKPY1055
SPRKPY1056
SPRKPY1058
SPRKPY1062
SPRKPY1063
SPRKPY1068
SPRKPY1071
SPRKPY1072
SPRKPY1073
SPRKPY1074
SPRKPY1075
SPRKPY1076
SPRKPY1080
SPRKPY1081
SPRKPY1082
SPRKPY1083
SPRKPY1084
SPRKPY1085
SPRKPY1086
SPRKPY1087
SPRKPRY1088
SPRKPY1089
SPRKPY1101