LogoLogo
SnowflakeDocumentation Home
  • Snowpark Migration Accelerator Documentation
  • General
    • Introduction
    • Getting Started
      • Download and Access
      • Installation
        • Windows Installation
        • MacOS Installation
        • Linux Installation
    • Conversion Software Terms of Use
      • Open Source Libraries
    • Release Notes
      • Old Version Release Notes
        • SC Spark Scala Release Notes
          • Known Issues
        • SC Spark Python Release Notes
          • Known Issues
    • Roadmap
  • User Guide
    • Overview
    • Before Using the SMA
      • Supported Platforms
      • Supported Filetypes
      • Code Extraction
      • Pre-Processing Considerations
    • Project Overview
      • Project Setup
      • Configuration and Settings
      • Tool Execution
    • Assessment
      • How the Assessment Works
      • Assessment Quick Start
      • Understanding the Assessment Summary
      • Readiness Scores
      • Output Reports
        • Curated Reports
        • SMA Inventories
        • Generic Inventories
        • Assessment zip file
      • Output Logs
      • Spark Reference Categories
    • Conversion
      • How the Conversion Works
      • Conversion Quick Start
      • Conversion Setup
      • Understanding the Conversion Assessment and Reporting
      • Output Code
    • Using the SMA CLI
      • Additional Parameters
  • Use Cases
    • Assessment Walkthrough
      • Walkthrough Setup
        • Notes on Code Preparation
      • Running the Tool
      • Interpreting the Assessment Output
        • Assessment Output - In Application
        • Assessment Output - Reports Folder
      • Running the SMA Again
    • Conversion Walkthrough
    • Sample Project
    • Using SMA with Docker
    • SMA CLI Walkthrough
  • Issue Analysis
    • Approach
    • Issue Code Categorization
    • Issue Codes by Source
      • General
      • Python
        • SPRKPY1000
        • SPRKPY1001
        • SPRKPY1002
        • SPRKPY1003
        • SPRKPY1004
        • SPRKPY1005
        • SPRKPY1006
        • SPRKPY1007
        • SPRKPY1008
        • SPRKPY1009
        • SPRKPY1010
        • SPRKPY1011
        • SPRKPY1012
        • SPRKPY1013
        • SPRKPY1014
        • SPRKPY1015
        • SPRKPY1016
        • SPRKPY1017
        • SPRKPY1018
        • SPRKPY1019
        • SPRKPY1020
        • SPRKPY1021
        • SPRKPY1022
        • SPRKPY1023
        • SPRKPY1024
        • SPRKPY1025
        • SPRKPY1026
        • SPRKPY1027
        • SPRKPY1028
        • SPRKPY1029
        • SPRKPY1030
        • SPRKPY1031
        • SPRKPY1032
        • SPRKPY1033
        • SPRKPY1034
        • SPRKPY1035
        • SPRKPY1036
        • SPRKPY1037
        • SPRKPY1038
        • SPRKPY1039
        • SPRKPY1040
        • SPRKPY1041
        • SPRKPY1042
        • SPRKPY1043
        • SPRKPY1044
        • SPRKPY1045
        • SPRKPY1046
        • SPRKPY1047
        • SPRKPY1048
        • SPRKPY1049
        • SPRKPY1050
        • SPRKPY1051
        • SPRKPY1052
        • SPRKPY1053
        • SPRKPY1054
        • SPRKPY1055
        • SPRKPY1056
        • SPRKPY1057
        • SPRKPY1058
        • SPRKPY1059
        • SPRKPY1060
        • SPRKPY1061
        • SPRKPY1062
        • SPRKPY1063
        • SPRKPY1064
        • SPRKPY1065
        • SPRKPY1066
        • SPRKPY1067
        • SPRKPY1068
        • SPRKPY1069
        • SPRKPY1070
        • SPRKPY1071
        • SPRKPY1072
        • SPRKPY1073
        • SPRKPY1074
        • SPRKPY1075
        • SPRKPY1076
        • SPRKPY1077
        • SPRKPY1078
        • SPRKPY1079
        • SPRKPY1080
        • SPRKPY1081
        • SPRKPY1082
        • SPRKPY1083
        • SPRKPY1084
        • SPRKPY1085
        • SPRKPY1086
        • SPRKPY1087
        • SPRKPY1088
        • SPRKPY1089
        • SPRKPY1101
      • Spark Scala
        • SPRKSCL1000
        • SPRKSCL1001
        • SPRKSCL1002
        • SPRKSCL1100
        • SPRKSCL1101
        • SPRKSCL1102
        • SPRKSCL1103
        • SPRKSCL1104
        • SPRKSCL1105
        • SPRKSCL1106
        • SPRKSCL1107
        • SPRKSCL1108
        • SPRKSCL1109
        • SPRKSCL1110
        • SPRKSCL1111
        • SPRKSCL1112
        • SPRKSCL1113
        • SPRKSCL1114
        • SPRKSCL1115
        • SPRKSCL1116
        • SPRKSCL1117
        • SPRKSCL1118
        • SPRKSCL1119
        • SPRKSCL1120
        • SPRKSCL1121
        • SPRKSCL1122
        • SPRKSCL1123
        • SPRKSCL1124
        • SPRKSCL1125
        • SPRKSCL1126
        • SPRKSCL1127
        • SPRKSCL1128
        • SPRKSCL1129
        • SPRKSCL1130
        • SPRKSCL1131
        • SPRKSCL1132
        • SPRKSCL1133
        • SPRKSCL1134
        • SPRKSCL1135
        • SPRKSCL1136
        • SPRKSCL1137
        • SPRKSCL1138
        • SPRKSCL1139
        • SPRKSCL1140
        • SPRKSCL1141
        • SPRKSCL1142
        • SPRKSCL1143
        • SPRKSCL1144
        • SPRKSCL1145
        • SPRKSCL1146
        • SPRKSCL1147
        • SPRKSCL1148
        • SPRKSCL1149
        • SPRKSCL1150
        • SPRKSCL1151
        • SPRKSCL1152
        • SPRKSCL1153
        • SPRKSCL1154
        • SPRKSCL1155
        • SPRKSCL1156
        • SPRKSCL1157
        • SPRKSCL1158
        • SPRKSCL1159
        • SPRKSCL1160
        • SPRKSCL1161
        • SPRKSCL1162
        • SPRKSCL1163
        • SPRKSCL1164
        • SPRKSCL1165
        • SPRKSCL1166
        • SPRKSCL1167
        • SPRKSCL1168
        • SPRKSCL1169
        • SPRKSCL1170
        • SPRKSCL1171
        • SPRKSCL1172
        • SPRKSCL1173
        • SPRKSCL1174
        • SPRKSCL1175
      • SQL
        • SparkSQL
          • SPRKSPSQL1001
          • SPRKSPSQL1002
          • SPRKSPSQL1003
          • SPRKSPSQL1004
          • SPRKSPSQL1005
          • SPRKSPSQL1006
        • Hive
          • SPRKHVSQL1001
          • SPRKHVSQL1002
          • SPRKHVSQL1003
          • SPRKHVSQL1004
          • SPRKHVSQL1005
          • SPRKHVSQL1006
      • Pandas
        • PNDSPY1001
        • PNDSPY1002
        • PNDSPY1003
        • PNDSPY1004
      • DBX
        • SPRKDBX1001
    • Troubleshooting the Output Code
      • Locating Issues
    • Workarounds
    • Deploying the Output Code
  • Translation Reference
    • Translation Reference Overview
    • SIT Tagging
      • SQL statements
    • SQL Embedded code
    • HiveSQL
      • Supported functions
    • Spark SQL
      • Spark SQL DDL
        • Create Table
          • Using
      • Spark SQL DML
        • Merge
        • Select
          • Distinct
          • Values
          • Join
          • Where
          • Group By
          • Union
      • Spark SQL Data Types
      • Supported functions
  • Workspace Estimator
    • Overview
    • Getting Started
  • INTERACTIVE ASSESSMENT APPLICATION
    • Overview
    • Installation Guide
  • Support
    • General Troubleshooting
      • How do I give SMA permission to the config folder?
      • Invalid Access Code error on VDI
      • How do I give SMA permission to Documents, Desktop, and Downloads folders?
    • Frequently Asked Questions (FAQ)
      • Using SMA with Jupyter Notebooks
      • How to request an access code
      • Sharing the Output with Snowflake
      • DBC files explode
    • Glossary
    • Contact Us
Powered by GitBook
On this page
  • Description
  • Scenarios
  • Additional recommendations
  1. Issue Analysis
  2. Issue Codes by Source
  3. Spark Scala

SPRKSCL1171

org.apache.spark.sql.functions.split

PreviousSPRKSCL1170NextSPRKSCL1172

Last updated 6 months ago

Message: Snowpark does not support split functions with more than two parameters or containing regex pattern. See documentation for more info.

Category: Warning.

Description

This issue appears when the SMA detects that has more than two parameters or containing regex pattern.

Scenarios

The split function is used to separate the given column around matches of the given pattern. This Spark function has three overloads.

Scenario 1

Input

Below is an example of the org.apache.spark.sql.functions.split function that generates this EWI. In this example, the split function has two parameters and the second argument is a string, not a regex pattern.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
val result = df.select(split(col("words"), "Snow"))

Output

The SMA adds the EWI SPRKSCL1171 to the output code to let you know that this function is not fully supported by Snowpark.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
/* EWI: SPRKSCL1171 => Snowpark does not support split functions with more than two parameters or containing regex pattern. See documentation for more info. */
val result = df.select(split(col("words"), "Snow"))

Recommended fix

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
val result = df.select(split(col("words"), lit("Snow")))

Scenario 2

Input

Below is an example of the org.apache.spark.sql.functions.split function that generates this EWI. In this example, the split function has two parameters and the second argument is a regex pattern.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
val result = df.select(split(col("words"), "^([\\d]+-[\\d]+-[\\d])"))

Output

The SMA adds the EWI SPRKSCL1171 to the output code to let you know that this function is not fully supported by Snowpark because regex patterns are not supported by Snowflake.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
/* EWI: SPRKSCL1171 => Snowpark does not support split functions with more than two parameters or containing regex pattern. See documentation for more info. */
val result = df.select(split(col("words"), "^([\\d]+-[\\d]+-[\\d])"))

Recommended fix

Since Snowflake does not supported regex patterns, try to replace the pattern by a not regex pattern string.

Scenario 3

Input

Below is an example of the org.apache.spark.sql.functions.split function that generates this EWI. In this example, the split function has more than two parameters.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
val result = df.select(split(df("words"), "Snow", 3))

Output

The SMA adds the EWI SPRKSCL1171 to the output code to let you know that this function is not fully supported by Snowpark, because Snowflake does not have a split function with more than two parameters.

val df = Seq("Snowflake", "Snowpark", "Snow", "Spark").toDF("words")
/* EWI: SPRKSCL1171 => Snowpark does not support split functions with more than two parameters or containing regex pattern. See documentation for more info. */
val result3 = df.select(split(df("words"), "Snow", 3))

Recommended fix

Since Snowflake does not supported split function with more than two parameters, try to use the split function supported by Snowflake.

Additional recommendations

Snowpark has an equivalent function that receives a column object as a second argument. For that reason, the Spark overload that receives a string argument in the second argument, but it is not a regex pattern, can convert the string into a column object using the function as a workaround.

For more support, you can email us at or post an issue .

org.apache.spark.sql.functions.split
split
com.snowflake.snowpark.functions.lit
sma-support@snowflake.com
in the SMA