LogoLogo
SnowflakeDocumentation Home
  • Snowpark Migration Accelerator Documentation
  • General
    • Introduction
    • Getting Started
      • Download and Access
      • Installation
        • Windows Installation
        • MacOS Installation
        • Linux Installation
    • Conversion Software Terms of Use
      • Open Source Libraries
    • Release Notes
      • Old Version Release Notes
        • SC Spark Scala Release Notes
          • Known Issues
        • SC Spark Python Release Notes
          • Known Issues
    • Roadmap
  • User Guide
    • Overview
    • Before Using the SMA
      • Supported Platforms
      • Supported Filetypes
      • Code Extraction
      • Pre-Processing Considerations
    • Project Overview
      • Project Setup
      • Configuration and Settings
      • Tool Execution
    • Assessment
      • How the Assessment Works
      • Assessment Quick Start
      • Understanding the Assessment Summary
      • Readiness Scores
      • Output Reports
        • Curated Reports
        • SMA Inventories
        • Generic Inventories
        • Assessment zip file
      • Output Logs
      • Spark Reference Categories
    • Conversion
      • How the Conversion Works
      • Conversion Quick Start
      • Conversion Setup
      • Understanding the Conversion Assessment and Reporting
      • Output Code
    • Using the SMA CLI
      • Additional Parameters
  • Use Cases
    • Assessment Walkthrough
      • Walkthrough Setup
        • Notes on Code Preparation
      • Running the Tool
      • Interpreting the Assessment Output
        • Assessment Output - In Application
        • Assessment Output - Reports Folder
      • Running the SMA Again
    • Conversion Walkthrough
    • Sample Project
    • Using SMA with Docker
    • SMA CLI Walkthrough
  • Issue Analysis
    • Approach
    • Issue Code Categorization
    • Issue Codes by Source
      • General
      • Python
        • SPRKPY1000
        • SPRKPY1001
        • SPRKPY1002
        • SPRKPY1003
        • SPRKPY1004
        • SPRKPY1005
        • SPRKPY1006
        • SPRKPY1007
        • SPRKPY1008
        • SPRKPY1009
        • SPRKPY1010
        • SPRKPY1011
        • SPRKPY1012
        • SPRKPY1013
        • SPRKPY1014
        • SPRKPY1015
        • SPRKPY1016
        • SPRKPY1017
        • SPRKPY1018
        • SPRKPY1019
        • SPRKPY1020
        • SPRKPY1021
        • SPRKPY1022
        • SPRKPY1023
        • SPRKPY1024
        • SPRKPY1025
        • SPRKPY1026
        • SPRKPY1027
        • SPRKPY1028
        • SPRKPY1029
        • SPRKPY1030
        • SPRKPY1031
        • SPRKPY1032
        • SPRKPY1033
        • SPRKPY1034
        • SPRKPY1035
        • SPRKPY1036
        • SPRKPY1037
        • SPRKPY1038
        • SPRKPY1039
        • SPRKPY1040
        • SPRKPY1041
        • SPRKPY1042
        • SPRKPY1043
        • SPRKPY1044
        • SPRKPY1045
        • SPRKPY1046
        • SPRKPY1047
        • SPRKPY1048
        • SPRKPY1049
        • SPRKPY1050
        • SPRKPY1051
        • SPRKPY1052
        • SPRKPY1053
        • SPRKPY1054
        • SPRKPY1055
        • SPRKPY1056
        • SPRKPY1057
        • SPRKPY1058
        • SPRKPY1059
        • SPRKPY1060
        • SPRKPY1061
        • SPRKPY1062
        • SPRKPY1063
        • SPRKPY1064
        • SPRKPY1065
        • SPRKPY1066
        • SPRKPY1067
        • SPRKPY1068
        • SPRKPY1069
        • SPRKPY1070
        • SPRKPY1071
        • SPRKPY1072
        • SPRKPY1073
        • SPRKPY1074
        • SPRKPY1075
        • SPRKPY1076
        • SPRKPY1077
        • SPRKPY1078
        • SPRKPY1079
        • SPRKPY1080
        • SPRKPY1081
        • SPRKPY1082
        • SPRKPY1083
        • SPRKPY1084
        • SPRKPY1085
        • SPRKPY1086
        • SPRKPY1087
        • SPRKPY1088
        • SPRKPY1089
        • SPRKPY1101
      • Spark Scala
        • SPRKSCL1000
        • SPRKSCL1001
        • SPRKSCL1002
        • SPRKSCL1100
        • SPRKSCL1101
        • SPRKSCL1102
        • SPRKSCL1103
        • SPRKSCL1104
        • SPRKSCL1105
        • SPRKSCL1106
        • SPRKSCL1107
        • SPRKSCL1108
        • SPRKSCL1109
        • SPRKSCL1110
        • SPRKSCL1111
        • SPRKSCL1112
        • SPRKSCL1113
        • SPRKSCL1114
        • SPRKSCL1115
        • SPRKSCL1116
        • SPRKSCL1117
        • SPRKSCL1118
        • SPRKSCL1119
        • SPRKSCL1120
        • SPRKSCL1121
        • SPRKSCL1122
        • SPRKSCL1123
        • SPRKSCL1124
        • SPRKSCL1125
        • SPRKSCL1126
        • SPRKSCL1127
        • SPRKSCL1128
        • SPRKSCL1129
        • SPRKSCL1130
        • SPRKSCL1131
        • SPRKSCL1132
        • SPRKSCL1133
        • SPRKSCL1134
        • SPRKSCL1135
        • SPRKSCL1136
        • SPRKSCL1137
        • SPRKSCL1138
        • SPRKSCL1139
        • SPRKSCL1140
        • SPRKSCL1141
        • SPRKSCL1142
        • SPRKSCL1143
        • SPRKSCL1144
        • SPRKSCL1145
        • SPRKSCL1146
        • SPRKSCL1147
        • SPRKSCL1148
        • SPRKSCL1149
        • SPRKSCL1150
        • SPRKSCL1151
        • SPRKSCL1152
        • SPRKSCL1153
        • SPRKSCL1154
        • SPRKSCL1155
        • SPRKSCL1156
        • SPRKSCL1157
        • SPRKSCL1158
        • SPRKSCL1159
        • SPRKSCL1160
        • SPRKSCL1161
        • SPRKSCL1162
        • SPRKSCL1163
        • SPRKSCL1164
        • SPRKSCL1165
        • SPRKSCL1166
        • SPRKSCL1167
        • SPRKSCL1168
        • SPRKSCL1169
        • SPRKSCL1170
        • SPRKSCL1171
        • SPRKSCL1172
        • SPRKSCL1173
        • SPRKSCL1174
        • SPRKSCL1175
      • SQL
        • SparkSQL
          • SPRKSPSQL1001
          • SPRKSPSQL1002
          • SPRKSPSQL1003
          • SPRKSPSQL1004
          • SPRKSPSQL1005
          • SPRKSPSQL1006
        • Hive
          • SPRKHVSQL1001
          • SPRKHVSQL1002
          • SPRKHVSQL1003
          • SPRKHVSQL1004
          • SPRKHVSQL1005
          • SPRKHVSQL1006
      • Pandas
        • PNDSPY1001
        • PNDSPY1002
        • PNDSPY1003
        • PNDSPY1004
      • DBX
        • SPRKDBX1001
    • Troubleshooting the Output Code
      • Locating Issues
    • Workarounds
    • Deploying the Output Code
  • Translation Reference
    • Translation Reference Overview
    • SIT Tagging
      • SQL statements
    • SQL Embedded code
    • HiveSQL
      • Supported functions
    • Spark SQL
      • Spark SQL DDL
        • Create Table
          • Using
      • Spark SQL DML
        • Merge
        • Select
          • Distinct
          • Values
          • Join
          • Where
          • Group By
          • Union
      • Spark SQL Data Types
      • Supported functions
  • Workspace Estimator
    • Overview
    • Getting Started
  • INTERACTIVE ASSESSMENT APPLICATION
    • Overview
    • Installation Guide
  • Support
    • General Troubleshooting
      • How do I give SMA permission to the config folder?
      • Invalid Access Code error on VDI
      • How do I give SMA permission to Documents, Desktop, and Downloads folders?
    • Frequently Asked Questions (FAQ)
      • Using SMA with Jupyter Notebooks
      • How to request an access code
      • Sharing the Output with Snowflake
      • DBC files explode
    • Glossary
    • Contact Us
Powered by GitBook
On this page
  • Description
  • Scenarios
  • Additional recommendations
  1. Issue Analysis
  2. Issue Codes by Source
  3. Pandas

PNDSPY1003

Element is not recognized

Message: < element > is not recognized, Pandas element is not recognized yet.

Category: Conversion error.

Description

This issue appears when there is a Pandas element that is not yet recognized by the SMA.

Scenarios

This issue can occur for different reasons, such as:

  • An element that does not exist in Pandas.

  • An element that was added in a Pandas version that the SMA does not yet support.

  • An internal error of the SMA when processing the element.

Scenario 1

Input

Below is an example of an element that does not exist in Pandas.

import pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
df.non_existent_function()

Output

Since the element does not exist in Pandas, the tool adds the EWI on the output code.

import snowflake.snowpark.modin.pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
#EWI: PNDSPY1003 => pandas.core.frame.DataFrame.non_existent_function is not yet recognized
df.non_existent_function()

Recommended fix

If it is not a valid Pandas element removed and use a valid Pandas function.

import snowflake.snowpark.modin.pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
df.valid_existent_function()

Scenario 2

Input

Below is an example of an element that was added in a Pandas version that the SMA does not yet support.

import pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
df.valid_function_since_x.x.x_version()

Output

Since the element was added in a Pandas version that the tool does not support yet, the tool adds the EWI on the output code.

import snowflake.snowpark.modin.pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
#EWI: PNDSPY1003 => pandas.core.frame.DataFrame.valid_function_since_x.x.x_version is not yet recognized
df.valid_function_since_x.x.x_version()

Recommended fix

Scenario 3

Input

Below is an example of an internal error of the SMA when processing the element.

import pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
df.valid_function()

Output

If it was an error while processing the element and that cause the tool can't recognize, the tool adds the EWI on the output code.

import snowflake.snowpark.modin.pandas as pd
​
df = pd.DataFrame(
    {
        "Name": ["Alice", "Bob", "Charlie"],
        "Age": [25, 30, 35],
        "City": ["New York", "Los Angeles", "Chicago"],
    }
)
​
#EWI: PNDSPY1003 => pandas.core.frame.DataFrame.valid_function is not yet recognized
df.valid_function()

Recommended fix

Additional recommendations

PreviousPNDSPY1002NextPNDSPY1004

Last updated 5 months ago

Check the to verify if the element exists in Pandas.

If it is a valid Pandas element, please report that you encountered a conversion error on that particular element using in the SMA and include any additional information that you think may be helpful.

Please verify the , if it is a valid Pandas element, please report that you encountered a conversion error on that particular element using in the SMA and include any additional information that you think may be helpful.

Verify if the element exists in the and also check the . If it is a valid Pandas element, please report that you encountered a conversion error on that particular element using in the SMA and include any additional information that you think may be helpful.

For more support, you can email us at or post an issue . If you have a contract for support with Snowflake, reach out to your sales engineer, and they can direct your support needs.

Pandas documentation
the Report an Issue option
Snowpark Pandas documentation
the Report an Issue option
Pandas documentation
Snowpark Pandas documentation
the Report an Issue option
sma-support@snowflake.com
in the SMA