LogoLogo
SnowflakeDocumentation Home
  • Snowpark Migration Accelerator Documentation
  • General
    • Introduction
    • Getting Started
      • Download and Access
      • Installation
        • Windows Installation
        • MacOS Installation
        • Linux Installation
    • Conversion Software Terms of Use
      • Open Source Libraries
    • Release Notes
      • Old Version Release Notes
        • SC Spark Scala Release Notes
          • Known Issues
        • SC Spark Python Release Notes
          • Known Issues
    • Roadmap
  • User Guide
    • Overview
    • Before Using the SMA
      • Supported Platforms
      • Supported Filetypes
      • Code Extraction
      • Pre-Processing Considerations
    • Project Overview
      • Project Setup
      • Configuration and Settings
      • Tool Execution
    • Assessment
      • How the Assessment Works
      • Assessment Quick Start
      • Understanding the Assessment Summary
      • Readiness Scores
      • Output Reports
        • Curated Reports
        • SMA Inventories
        • Generic Inventories
        • Assessment zip file
      • Output Logs
      • Spark Reference Categories
    • Conversion
      • How the Conversion Works
      • Conversion Quick Start
      • Conversion Setup
      • Understanding the Conversion Assessment and Reporting
      • Output Code
    • Using the SMA CLI
      • Additional Parameters
  • Use Cases
    • Assessment Walkthrough
      • Walkthrough Setup
        • Notes on Code Preparation
      • Running the Tool
      • Interpreting the Assessment Output
        • Assessment Output - In Application
        • Assessment Output - Reports Folder
      • Running the SMA Again
    • Conversion Walkthrough
    • Sample Project
    • Using SMA with Docker
    • SMA CLI Walkthrough
  • Issue Analysis
    • Approach
    • Issue Code Categorization
    • Issue Codes by Source
      • General
      • Python
        • SPRKPY1000
        • SPRKPY1001
        • SPRKPY1002
        • SPRKPY1003
        • SPRKPY1004
        • SPRKPY1005
        • SPRKPY1006
        • SPRKPY1007
        • SPRKPY1008
        • SPRKPY1009
        • SPRKPY1010
        • SPRKPY1011
        • SPRKPY1012
        • SPRKPY1013
        • SPRKPY1014
        • SPRKPY1015
        • SPRKPY1016
        • SPRKPY1017
        • SPRKPY1018
        • SPRKPY1019
        • SPRKPY1020
        • SPRKPY1021
        • SPRKPY1022
        • SPRKPY1023
        • SPRKPY1024
        • SPRKPY1025
        • SPRKPY1026
        • SPRKPY1027
        • SPRKPY1028
        • SPRKPY1029
        • SPRKPY1030
        • SPRKPY1031
        • SPRKPY1032
        • SPRKPY1033
        • SPRKPY1034
        • SPRKPY1035
        • SPRKPY1036
        • SPRKPY1037
        • SPRKPY1038
        • SPRKPY1039
        • SPRKPY1040
        • SPRKPY1041
        • SPRKPY1042
        • SPRKPY1043
        • SPRKPY1044
        • SPRKPY1045
        • SPRKPY1046
        • SPRKPY1047
        • SPRKPY1048
        • SPRKPY1049
        • SPRKPY1050
        • SPRKPY1051
        • SPRKPY1052
        • SPRKPY1053
        • SPRKPY1054
        • SPRKPY1055
        • SPRKPY1056
        • SPRKPY1057
        • SPRKPY1058
        • SPRKPY1059
        • SPRKPY1060
        • SPRKPY1061
        • SPRKPY1062
        • SPRKPY1063
        • SPRKPY1064
        • SPRKPY1065
        • SPRKPY1066
        • SPRKPY1067
        • SPRKPY1068
        • SPRKPY1069
        • SPRKPY1070
        • SPRKPY1071
        • SPRKPY1072
        • SPRKPY1073
        • SPRKPY1074
        • SPRKPY1075
        • SPRKPY1076
        • SPRKPY1077
        • SPRKPY1078
        • SPRKPY1079
        • SPRKPY1080
        • SPRKPY1081
        • SPRKPY1082
        • SPRKPY1083
        • SPRKPY1084
        • SPRKPY1085
        • SPRKPY1086
        • SPRKPY1087
        • SPRKPY1088
        • SPRKPY1089
        • SPRKPY1101
      • Spark Scala
        • SPRKSCL1000
        • SPRKSCL1001
        • SPRKSCL1002
        • SPRKSCL1100
        • SPRKSCL1101
        • SPRKSCL1102
        • SPRKSCL1103
        • SPRKSCL1104
        • SPRKSCL1105
        • SPRKSCL1106
        • SPRKSCL1107
        • SPRKSCL1108
        • SPRKSCL1109
        • SPRKSCL1110
        • SPRKSCL1111
        • SPRKSCL1112
        • SPRKSCL1113
        • SPRKSCL1114
        • SPRKSCL1115
        • SPRKSCL1116
        • SPRKSCL1117
        • SPRKSCL1118
        • SPRKSCL1119
        • SPRKSCL1120
        • SPRKSCL1121
        • SPRKSCL1122
        • SPRKSCL1123
        • SPRKSCL1124
        • SPRKSCL1125
        • SPRKSCL1126
        • SPRKSCL1127
        • SPRKSCL1128
        • SPRKSCL1129
        • SPRKSCL1130
        • SPRKSCL1131
        • SPRKSCL1132
        • SPRKSCL1133
        • SPRKSCL1134
        • SPRKSCL1135
        • SPRKSCL1136
        • SPRKSCL1137
        • SPRKSCL1138
        • SPRKSCL1139
        • SPRKSCL1140
        • SPRKSCL1141
        • SPRKSCL1142
        • SPRKSCL1143
        • SPRKSCL1144
        • SPRKSCL1145
        • SPRKSCL1146
        • SPRKSCL1147
        • SPRKSCL1148
        • SPRKSCL1149
        • SPRKSCL1150
        • SPRKSCL1151
        • SPRKSCL1152
        • SPRKSCL1153
        • SPRKSCL1154
        • SPRKSCL1155
        • SPRKSCL1156
        • SPRKSCL1157
        • SPRKSCL1158
        • SPRKSCL1159
        • SPRKSCL1160
        • SPRKSCL1161
        • SPRKSCL1162
        • SPRKSCL1163
        • SPRKSCL1164
        • SPRKSCL1165
        • SPRKSCL1166
        • SPRKSCL1167
        • SPRKSCL1168
        • SPRKSCL1169
        • SPRKSCL1170
        • SPRKSCL1171
        • SPRKSCL1172
        • SPRKSCL1173
        • SPRKSCL1174
        • SPRKSCL1175
      • SQL
        • SparkSQL
          • SPRKSPSQL1001
          • SPRKSPSQL1002
          • SPRKSPSQL1003
          • SPRKSPSQL1004
          • SPRKSPSQL1005
          • SPRKSPSQL1006
        • Hive
          • SPRKHVSQL1001
          • SPRKHVSQL1002
          • SPRKHVSQL1003
          • SPRKHVSQL1004
          • SPRKHVSQL1005
          • SPRKHVSQL1006
      • Pandas
        • PNDSPY1001
        • PNDSPY1002
        • PNDSPY1003
        • PNDSPY1004
      • DBX
        • SPRKDBX1001
    • Troubleshooting the Output Code
      • Locating Issues
    • Workarounds
    • Deploying the Output Code
  • Translation Reference
    • Translation Reference Overview
    • SIT Tagging
      • SQL statements
    • SQL Embedded code
    • HiveSQL
      • Supported functions
    • Spark SQL
      • Spark SQL DDL
        • Create Table
          • Using
      • Spark SQL DML
        • Merge
        • Select
          • Distinct
          • Values
          • Join
          • Where
          • Group By
          • Union
      • Spark SQL Data Types
      • Supported functions
  • Workspace Estimator
    • Overview
    • Getting Started
  • INTERACTIVE ASSESSMENT APPLICATION
    • Overview
    • Installation Guide
  • Support
    • General Troubleshooting
      • How do I give SMA permission to the config folder?
      • Invalid Access Code error on VDI
      • How do I give SMA permission to Documents, Desktop, and Downloads folders?
    • Frequently Asked Questions (FAQ)
      • Using SMA with Jupyter Notebooks
      • How to request an access code
      • Sharing the Output with Snowflake
      • DBC files explode
    • Glossary
    • Contact Us
Powered by GitBook
On this page
  • Description
  • Scenario
  • Additional recommendations
  1. Issue Analysis
  2. Issue Codes by Source
  3. Spark Scala

SPRKSCL1169

Spark element is missing on the method chaining.

Message: Spark element is missing on the method chaining.

Category: Warning.

Description

This issue appears when the SMA detects that a Spark element call is missing on the method chaining. SMA needs to know that Spark element to analyze the statement.

Scenario

Input

Below is an example where load function call is missing on the method chaining.

val reader = spark.read.format("json")
val df = reader.load(path)

Output

The SMA adds the EWI SPRKSCL1169 to the output code to let you know that load function call is missing on the method chaining and SMA can not analyze the statement.

/*EWI: SPRKSCL1169 => Function 'org.apache.spark.sql.DataFrameReader.load' is missing on the method chaining*/
val reader = spark.read.format("json")
val df = reader.load(path)

Recommended fix

Make sure that all function calls of the method chaining are in the same statement.

val reader = spark.read.format("json").load(path)

Additional recommendations

PreviousSPRKSCL1168NextSPRKSCL1170

Last updated 6 months ago

For more support, you can email us at or post an issue .

sma-support@snowflake.com
in the SMA