Built-in Functions
This page provides a description of the translation for the built-in functions in Teradata to Snowflake
This page only lists the functions that are already transformed by SnowConvert, if a function from the Teradata documentation is not listed there then it should be taken as unsupported.
Some Teradata functions do not have a direct equivalent in Snowflake so they are transformed into a functional equivalent UDF, these can be easily spotted by the _UDF postfix in the name of the function. For more information on the UDFs SnowConvert uses check this git repository.
Aggregate Functions
AVG
AVG
CORR
CORR
COUNT
COUNT
COVAR_POP
COVAR_POP
COVAR_SAMP
COVAR_SAMP
GROUPING
GROUPING
KURTOSIS
KURTOSIS
MAXIMUM
MAX
MAX
MINIMUM
MIN
MIN
REGR_AVGX
REGR_AVGX
REGR_AVGY
REGR_AVGY
REGR_COUNT
REGR_COUNT
REGR_INTERCEPT
REGR_INTERCEPT
REGR_R2
REGR_R2
REGR_SLOPE
REGR_SLOPE
REGR_SXX
REGR_SXX
REGR_SXY
REGR_SXY
REGR_SYY
REGR_SYY
SKEW
SKEW
STDDEV_POP
STDDEV_POP
STDDEV_SAMP
STDDEV_SAMP
SUM
SUM
UNPIVOT
UNPIVOT
Unpivot with multiple functions not supported in Snowflake
VAR_POP
VAR_POP
VAR_SAMP
VAR_SAMP
Arithmetic, Trigonometric, Hyperbolic Operators/Functions
ABS
ABS
CEILING
CEIL
DEGREES
DEGREES
EXP
EXP
FLOOR
FLOOR
HYPERBOLIC
ACOSH
ASINH
ATANH
COSH
SINH
TANH
HYPERBOLIC
ACOSH
ASINH
ATANH
COSH
SINH
TANH
LOG
LOG
LN
LN
MOD
MOD
NULLIFZERO(param)
CASE WHEN param=0 THEN null ELSE param END
POWER
POWER
RANDOM
RANDOM
RADIANS
RADIANS
ROUND
ROUND
SIGN
SIGN
SQRT
SQRT
TRUNC
TRUNC_UDF
TRIGONOMETRIC
ACOS
ASIN
ATAN
ATAN2
COS
SIN
TAN
TRIGONOMETRIC
ACOS
ASIN
ATAN
ATAN2
COS
SIN
TAN
ZEROIFNULL
ZEROIFNULL
See Arithmetic, Trigonometric, Hyperbolic Operators/Functions
Attribute Functions
BIT_LENGTH
BIT_LENGTH
BYTE
BYTES
LENGTH
CHAR
CHARS
CHARACTERS
LEN
CHAR_LENGTH
CHARACTER_LENGTH
LEN
MCHARACTERS
LENGTH
OCTECT_LENGTH
OCTECT_LENGTH
Bit/Byte Manipulation Functions
BITAND
BITAND
BITNOT
BITNOT
BITOR
BITOR
BITXOR
BITXOR
GETBIT
GETBIT
Built-In (System Functions)
ACCOUNT
CURRENT_ACCOUNT
CURRENT_DATE
CURDATE
CURRENT_DATE
CURRENT_ROLE
CURRENT_ROLE
CURRENT_TIME CURTIME
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIMESTAMP
DATABASE
CURRENT_DATABASE
DATE
CURRENT_DATE
NOW
CURRENT_TIMESTAMP
SESSION
CURRENT_SESSION
TIME
CURRENT_TIME
USER
CURRENT_USER
Business Calendars
DAYNUMBER_OF_MONTH(DatetimeValue, 'COMPATIBLE')
DAYOFMONTH
DAYNUMBER_OF_MONTH(DatetimeValue, 'ISO')
DAYNUMBER_OF_MONTH_ISO_UDF
DAYNUMBER_OF_MONTH(DatetimeValue, 'TERADATA')
DAYOFMONTH
DAYNUMBER_OF_WEEK(DatetimeValue, 'ISO')
DAYOFWEEKISO
DAYNUMBER_OF_WEEK(DatetimeValue, 'COMPATIBLE')
DAY_OF_WEEK_COMPATIBLE_UDF
DAYNUMBER_OF_WEEK(DatetimeValue, 'TERADATA') DAYNUMBER_OF_WEEK(DatetimeValue)
TD_DAY_OF_WEEK_UDF
DAYNUMBER_OF_YEAR(DatetimeValue, 'ISO')
PUBLIC.DAY_OF_YEAR_ISO_UDF
DAYNUMBER_OF_YEAR(DatetimeValue)
DAYOFYEAR
QUARTERNUMBER_OF_YEAR
QUARTER
TD_SUNDAY(DateTimeValue)
PREVIOUS_DAY(DateTimeValue, 'Sunday')
WEEKNUMBER_OF_MONTH
WEEKNUMBER_OF_MONTH_UDF
WEEKNUMBER_OF_QUARTER(dateTimeValue)
WEEKNUMBER_OF_QUARTER_UDF
WEEKNUMBER_OF_QUARTER(dateTimeValue, 'ISO')
WEEKNUMBER_OF_QUARTER_ISO_UDF
WEEKNUMBER_OF_QUARTER(dateTimeValue, 'COMPATIBLE')
WEEKNUMBER_OF_QUARTER_COMPATIBLE_UDF
WEEKNUMBER_OF_YEAR(DateTimeValue, 'ISO')
WEEKISO
YEARNUMBER_OF_CALENDAR(DATETIMEVALUE, 'COMPATIBLE')
YEAR
YEARNUMBER_OF_CALENDAR(DATETIMEVALUE, 'ISO')
YEAROFWEEKISO
Calendar Functions
DAYNUMBER_OF_WEEK(DatetimeValue)
TD_DAY_OF_WEEK_UDF
DAYNUMBER_OF_WEEK(DatetimeValue, 'COMPATIBLE')
DAY_OF_WEEK_COMPATIBLE_UDF
QuarterNumber_Of_Year(DatetimeValue, 'ISO')
QUARTER_OF_YEAR_ISO_UDF(DatetimeValue)
TD_DAY_OF_CALENDAR
TD_DAY_OF_CALENDAR_UDF
TD_DAY_OF_MONTH
DAYOFMONTH
TD_DAY_OF_WEEK DAYOFWEEK
TD_DAY_OF_WEEK_UDF
TD_DAY_OF_YEAR
DAYOFYEAR
TD_WEEK_OF_CALENDAR(DateTimeValue)
DATEDIFF('WEEK', '1900-01-01', DateTimeValue)
TD_WEEK_OF_YEAR
WEEK_OF_YEAR_UDF
TD_YEAR_BEGIN(DateTimeValue)
YEAR_BEGIN_UDF(DateTimeValue)
TD_YEAR_BEGIN(DateTimeValue, 'ISO')
YEAR_BEGIN_ISO_UDF(DateTimeValue)
TD_YEAR_END(DateTimeValue)
YEAR_END_UDF(DateTimeValue)
TD_YEAR_END(DateTimeValue, 'ISO')
YEAR_END_ISO_UDF(DateTimeValue)
WEEKNUMBER_OF_MONTH(DateTimeValue)
WEEKNUMBER_OF_MONTH_UDF(DateTimeValue)
WEEKNUMBER_OF_QUARTER(DateTimeValue)
WEEKNUMBER_OF_QUARTER_UDF(DateTimeValue)
WEEKNUMBER_OF_QUARTER(DateTimeValue, 'ISO')
WEEKNUMBER_OF_QUARTER_ISO_UDF(DateTimeValue)
WEEKNUMBER_OF_QUARTER(DateTimeValue, 'COMPATIBLE')
WEEKNUMBER_OF_QUARTER_COMPATIBLE_UDF(DateTimeValue)
WEEKNUMBER_OF_YEAR(DateTimeValue)
WEEK_OF_YEAR_UDF(DateTimeValue)
WEEKNUMBER_OF_YEAR(DateTimeValue, 'COMPATIBLE')
WEEK_OF_YEAR_COMPATIBLE_UDF(DateTimeValue)
Case Functions
NULLIF
NULLIF
See case functions
Comparison Functions
DECODE
DECODE
GREATEST
GREATEST
LEAST
LEAST
Data type conversions
CAST
CAST
CAST(DatetimeValue AS INT)
DATE_TO_INT_UDF
TRYCAST
TRY_CAST
Data Type Conversion Functions
TO_BYTES(Input, 'Base10')
INT2HEX_UDF(Input)
TO_NUMBER
TO_NUMBER
TO_DATE
TO_DATE
TO_DATE(input, 'YYYYDDD')
JULIAN_TO_DATE_UDF
DateTime and Interval functions
ADD_MONTHS
ADD_MONTHS
EXTRACT
EXTRACT
LAST_DAY
LAST_DAY
MONTH
MONTH
MONTHS_BETWEEN
MONTHS_BETWEEN_UDF
NEXT_DAY
NEXT_DAY
OADD_MONTHS
ADD_MONTHS
ROUND(Numeric)
ROUND
ROUND(Date)
ROUND_DATE_UDF
TRUNC(Date)
TRUNC_UDF
YEAR
YEAR
Hash functions
HASH_MD5
MD5
HASHAMP
HASHBACKAM
HASHBUCKET
HASHROW
Not supported
Check notes on the architecture differences between Teradata and Snowflake
See Hash functions
JSON functions
JSON_CHECK
CHECK_JSON
Check JSON_CHECK
Null-Handling functions
NVL
NVL
NVL2
NVL2
Ordered Analytical/Window Aggregate functions
CSUM(col1, col2)
SUM(col_1) OVER (PARTITION BY null ORDER BY col_2 ROWS UNBOUNDED PRECEDING)
CUME_DIST
CUME_DIST
DENSE_RANK
DENSE_RANK
FIRST_VALUE
FIRST_VALUE
LAG
LAG
LAST_VALUE
LAST_VALUE
LEAD
LEAD
MAVG(csales, 2, cdate, csales)
AVG(csales) OVER ( ORDER BY cdate, csales ROWS 1 PRECEDING)
MEDIAN
MEDIAN
MSUM(csales, 2, cdate, csales)
SUM(csales) OVER(ORDER BY cdate, csales ROWS 1 PRECEDING)
PERCENT_RANK
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_CONT
PERCENTILE_DISC
PERCENTILE_DISC
QUANTILE
QUANTILE
RANK
RANK
ROW_NUMBER
ROW_NUMBER
See Window functions
Period functions and operators
BEGIN
PERIOD_BEGIN_UDF
END
PERIOD_END_UDF
INTERVAL
TIMESTAMPDIFF
LAST
PERIOD_LAST_UDF
LDIFF
PERIOD_LDIFF_UDF
OVERLAPS
PUBLIC.PERIOD_OVERLAPS_UDF
PERIOD
PERIOD_UDF
PERIOD(datetimeValue, UNTIL_CHANGED) PERIOD(datetimeValue, UNTIL_CLOSED)
PERIOD_UDF(datetimeValue, '9999-12-31 23:59:59.999999')
See notes about ending bound constants
RDIFF
PERIOD_RDIFF_UDF
Query band functions
Regex functions
See Regex functions
String operators and functions
ASCII
ASCII
CHAR2HEXINT
CHAR2HEXINT_UDF
CHR
CHR/CHAR
CHAR_LENGTH
LEN
CONCAT
CONCAT
EDITDISTANCE
EDITDISTANCE
INITCAP
INITCAP
INSTR
REGEXP_INSTR
INSTR(StringValue, StringValue ,NumericNegativeValue, NumericValue)
INSTR_UDF(StringValue, StringValue ,NumericNegativeValue, NumericValue)
LEFT
LEFT
LENGTH
LENGTH
LOWER
LOWER
LPAD
LPAD
LTRIM
LTRIM
OREPLACE
REPLACE
OTRANSLATE
TRANSLATE
REVERSE
REVERSE
RIGHT
RIGHT
RPAD
RPAD
RTRIM
RTRIM
SOUNDEX
SOUNDEX_P123
STRTOK
STRTOK
TRANSLATE_CHK
TRANSLATE_CHK_UDF
TRIM(LEADING '0' FROM aTABLE)
LTRIM(aTABLE, '0')
TRIM(TRAILING '0' FROM aTABLE)
RTRIM(aTABLE, '0')
TRIM(BOTH '0' FROM aTABLE)
TRIM(aTABLE, '0')
TRIM(CAST(numericValue AS FORMAT '999'))
LPAD(numericValue, 3, 0)
UPPER
UPPER
St_Point functions
ST_SPHERICALDISTANCE
HAVERSINE ST_DISTANCE
Table operators
See Table Operators
XML functions
XMLQUERY
Not Supported
See XML functions
Extensibility UDFs
This section contains UDFs and other extensibility functions that are not offered as system built-in functions by Teradata but are transformed by SnowConvert
Notes
Architecture differences between Teradata and Snowflake
Teradata has a shared-nothing architecture with Access Module Processors (AMP) where each AMP manages their own share of disk storage and is accessed through hashing when doing queries. To take advantage of parallelism the stored information should be evenly distributed among AMPs and to do this Teradata offers a group of hash-related functions that can be used to determine how good the actual primary indexes are.
On the other hand, Snowflake architecture is different, and it manages how the data is stored on its own, meaning users do not need to worry about optimizing their data distribution.
Ending bound constants (UNTIL_CHANGED and UNTIL_CLOSED)
Both UNTIL_CHANGED and UNTIL_CLOSED are Teradata constants that represent an undefined ending bound for periods. Internally, these constants are represented as the maximum value a timestamp can have i.e '9999-12-31 23:59:59.999999'. During the migration of the PERIOD function, the ending bound is checked if present to determine if it is one of these constants and to replace it with varchar of value '9999-12-31 23:59:59.999999' in case it is, Snowflake then casts the varchar to date or timestamp depending on the type of the beginning bound when calling PERIOD_UDF.
Implicit conversion
Some Teradata string functions like INDEX or POSITION accept non-string data types and implicitly convert them to string, this can cause inconsistencies in the results of those functions between Teradata and Snowflake. For example, the following Teradata code:
Returns 4, while the CHARINDEX equivalent in Snowflake:
Returns 2, this happens because Teradata has its own default formats which are used during implicit conversion. In the above example, Teradata interprets the numeric constant 35 as BYTEINT and uses BYTEINT default format'-999'
for the implicit conversion to string, causing the converted value to be ' 35'
. On the other hand, Snowflake uses its own default formats, creating inconsistencies in the result.
To solve this, the following changes are done to those function parameters:
If the parameter does not have a cast with format, then a snowflake
TO_VARCHAR
function with the default Teradata format equivalent in Snowflake is added instead.If the parameter does have a cast with format, then the format is converted to its Snowflake equivalent and the
TO_VARCHAR
function is added.As a side note, Teradata ignores the sign of a number if it is not explicitly put inside a format, while Snowflake always adds spaces to insert the sign even when not specified, for those cases a check is done to see if the sign was specified and to remove it from the Snowflake string in case it was not.
After these changes, the resulting code would be:
Which returns 4, the same as the Teradata code.
Last updated